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Abstract 

 

We study the problem of finding ordinal utility functions to rank the outcomes of a decision 

when preference independence between the attributes is not present. We propose that the next 

level of complexity is to assume that preferences over one attribute can switch at most once as 

another attribute varies from low to high. We refer to this property as ordinal one-switch 

independence. We present both necessary and sufficient conditions for this ordinal property to 

hold and provide families of functions that satisfy this new property.  

 

1. Introduction 
 

An ordinal utility function reflects a decision maker’s rank order for the consequences of a 

decision, as described by a set of attributes, 1,..., nX X  . For example, a function ( , )u x y  over two 

attributes X and Y is an ordinal utility function when it returns a higher value for a more preferred 

prospect and returns equal values when two prospects are equally preferred, i.e.  
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An ordinal utility function is sufficient to determine the best decision alternative if there is no 

uncertainty about the outcomes. The best decision alternative corresponds to the prospect with 

the highest ordinal utility. When uncertainty is present, a cardinal utility function is needed, and 

the best decision alternative is the one with the highest expected utility.  

Identifying a suitable utility function to determine the best decision alternative (whether ordinal 

or cardinal) can be challenging. The standard approach is to decompose a multiattribute utility 

function into lower-order components by finding appropriate simplifications. 

A wealth of literature has provided conditions for preferences over lotteries to characterize the 

functional form of the cardinal utility function. See for example Pfanzagl (1959), Bell (1988) and 

Abbas (2007) for conditions on univariate lotteries, and Farquhar (1975), Fishburn (1974 and 
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1975), Keeney and Raiffa (1976), Bell (1979), Abbas (2009), and Abbas and Bell (2011 and 

2012) for conditions on multivariate lotteries. Much less literature has provided ordinal 

conditions that characterize the utility function. 

The best-known condition on ordinal preferences is based on the idea of preferential 

independence (Debreu 1960), which requires that ordinal preferences for consequences of a 

decision characterized by any subset of the attributes do not depend on the levels at which the 

remaining attributes are fixed. If three or more attributes satisfy this ordinal property, then the 

ordinal utility function must be a monotone transformation of an additive function of the 

attributes, i.e.  
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where 3n , g is a monotonic function and ,  1,...,iu i n  are arbitrary functions.  

The condition of mutual preferential independence does not determine the ordinal functions

,  1,...,iu i n , but it does decompose the functional form into univariate assessments over each 

of the individual attributes, which reduces the search space for the structure of the ordinal utility 

function significantly. Debreu’s result only works if there are three or more attributes. For n=2 

there are classic conditions which dictate the additive form, for example Karni and Safra (1998). 

One of the contributions of this paper is to derive the general form of preference independence 

for two attributes.  

 

While ordinal preferences described by mutual preferential independence may suffice in a 

variety of problems, it is natural to consider how to proceed with the construction of the utility 

function if it does not hold.  

Keeney and Raiffa (1976) introduced the notion of utility independence, where preferences for 

lotteries over a subset of the attributes do not depend on the levels of the remaining attributes. 

They derived a family of cardinal utility functions that satisfies this property. In Abbas and Bell 

(2011, 2012), we generalized the notion of utility independence for cardinal utility functions. The 

idea is to consider how many times preferences over pairs of gambles on one attribute can switch 
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as another attribute ranges from small to large. That is, for any two lotteries x
1
,x

2
  in X , how 

often can the difference in expected utilities of the lotteries, u(x
1
, y) -u(x

2
, y) , switch sign? 

Utility independence assumptions correspond to “no switch”. In our work, we proposed a 

functional form that allows for preferences over lotteries to “switch at most once”, and we also 

generalized the result to functional forms that allow for preferences to switch any number of 

times. But if pairwise preferences can switch multiple times as y varies one has to wonder 

whether the attributes have been chosen appropriately.  

The purpose of this paper is to provide new conditions on ordinal preferences to help the analyst 

identify suitable ordinal utility functions that may be used when preferential independence 

conditions are not present.  We start our discussion with the case of a single attribute, and discuss 

the implications of ordinal one-switch and zero-switch independence for wealth. Next, we 

consider the case of two attributes. We consider the functional form of an ordinal utility function 

where only one attribute is preferentially independent of the other. We then consider our new 

ordinal property. We provide families of functions that satisfy this ordinal one-switch property 

and also discuss conditions (Theorem 5.1) to identify when this property does not hold. We 

conclude with a new formulation (Theorem 7.3) that can be used to construct ordinal one-switch 

utility functions using two curves on the surface of the ordinal function, subject to reasonable 

conditions on its derivatives.  Throughout the paper we will assume utility functions are 

continuous, and on occasion, differentiable.  

2. Basic Notation and Definitions  

To simplify the exposition, we start our analysis by considering the case of a one-attribute utility 

function, ( )u x w , where w is initial wealth and x is the increment to be considered. In our 

exposition, we first consider lotteries on X , which we write as x ,
 
denoting the expected utility 

of those lotteries as  u(x +w) .  

A utility function, ( )u x w  is cardinal zero-switch if for any two lotteries over X, say x
1
 and x

2
,  

the difference in expected utilities D(w) = u(x
1
+w) -u(x

2
+w)  does not change sign as w varies.   
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Throughout the paper, when we say that a function “does not change sign”, we mean that it is 

either always positive, always negative, or always zero.  

As has been shown by Pfanzagl (1959), the cardinal zero-switch condition is satisfied for all 

lotteries if and only if the utility function is a linear transform of either a linear or an exponential 

utility function, i.e. the utility function is one of the forms ( ) cxu x a be   or u(x) = a + bx. 

Having discussed the condition of zero-switch utility functions over lotteries, we now define the 

corresponding property for ordinal utility functions over known consequences.  

Definition 2.1  A utility function, ( )u x w  is ordinal zero switch if for any two fixed values 

1 2,x x
 
of attribute X the difference 1 2( ) ( ) ( )w u x w u x w      does not change sign as w varies.   

 

Theorem 2.1   A utility function ( )u x is ordinal zero-switch if and only if it is strictly monotone.  

The proof is evident. As we have seen, the equivalent cardinal property for zero-switch utility 

functions requires the linear or exponential functions (both of which are monotone functions). 

The ordinal zero-switch property provides less specificity than the cardinal zero-switch property 

(requiring the function only to be monotone and not necessarily linear or exponential). This is a 

general theme that we shall observe throughout this paper: ordinal utility functions provide less 

specification than the corresponding properties over lotteries as they impose milder conditions. 

However, they are also easier to assert than preferences over lotteries.  

What if ordinal preferences for increments of X can switch, but at most once? Once again let us 

first start with the cardinal case.  

A utility function, ( )u x w  is a cardinal one-switch utility function over wealth if for any two 

lotteries, x
1
  and x

2
,  over X the difference in expected utilities, D(w) = u(x

1
+w) -u(x

2
+w) , is 

either never zero, is zero for all w, or is zero for at most one w. 

 

In this and later switching definitions, the one-switch condition will include the zero-switch 

condition as a special case, so that zero-switch utility functions will automatically qualify as one-

switch functions. 
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Bell (1988) showed that the only utility functions that satisfy this cardinal one-switch condition 

are the four functions: 
2( ) ;u x ax bx c   ( ) ( ) ;  ( ) ;cx cxu x a bx e d u x ax be d        and 

( ) .bx dxu x ae ce f      

We now turn to the ordinal case. 

Definition 2.2  A utility function u(x+w) is ordinal one switch if for any pair of X consequences 

either one is preferred to the other for all w, or they are indifferent for all w, or there exists a 

unique wealth level above which one consequence is preferred, below which the other is 

preferred. 

Evidently the ordinal one-switch condition implies that 1 2( ) ( ) ( )w u x w u x w       is either 

always zero, never zero, or zero for exactly one w. In particular it excludes cases where two 

values of X are indifferent on an interval but strict preference holds on another, for if 1 2~x x
 
at 

any two wealth levels then our definition requires that 1 2~x x  for all w. 

Theorem 2.2  A utility function ( )u x  is ordinal one-switch if and only if it is unimodal (i.e. has 

at most one turning point, which may be infinite).   

Again the proof is evident. The ordinal zero-switch condition required strictly monotone 

functions, and the ordinal one-switch condition requires unimodal functions. Theorem 2.2 also 

illustrates the generality of the ordinal one-switch condition in comparison to its corresponding 

cardinal form. Note that the four cardinal one-switch utility families shown above are all 

unimodal functions.   

3. Two Attributes: Ordinal Zero-Switch Independence  

So far we have considered ordinal and cardinal switching properties for a single attribute. 

Specifying similar properties for more than one attribute enables a decomposition of 

multiattribute utility functions that simplifies their assessment. For the sake of completeness we 

review preference independence. 
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Definition 3.1:  Attribute X is preferentially independent of attribute Y if the preference ordering 

of any two levels of X is independent of the fixed level of Y, that is, the difference  

1 2( ) ( , ) ( , )y u x y u x y    has constant sign as y varies.  

As we noted, Debreu (1960) discussed the implications of mutual preferential independence for 

three or more attributes, where every subset of the attributes is preferentially independent of its 

complement. Surprisingly, we have not found any explicit discussion of this ordinal property for 

two attributes. The following theorem characterizes this property.    

Theorem 3.1 X is preferentially independent of Y if and only if  1( , ) ( ),u x y v x y  where   is 

a strictly monotonic function of 1v   for all y. 

Note that the function 1( )v x  itself need not be monotone. For example ( , ) sin( )yu x y e x  

satisfies the condition of X being preferentially independent of Y . 

The following equivalent definition of preferential independence, using the notion of zero-switch 

preferences, serves to underline our view of one-switch as a natural extension of preference 

independence.  

Definition 3.2  An attribute X is ordinal zero-switch independent of attribute Y, if for any two 

values of X, say 1x  and 2x  , the difference 1 2( ) ( , ) ( , )y u x y u x y    does not change sign as y 

varies. 

Proposition 3.1  X is zero-switch independent of Y if and only if it is preferentially independent 

of Y.  

Proposition 3.1 and Theorem 3.1 imply that X is zero-switch independent of Y if and only if 

 1( , ) ( ), .u x y v x y  The equivalent (stronger) condition for lotteries is the notion of utility 

independence (Keeney and Raiffa 1976) where preferences for lotteries over X do not change for 

any value of Y and so the difference  D(y) = u(x
1
, y) -u(x

2
, y)  does not change sign with y.  

Keeney and Raiffa (1976) show that this condition implies that 0 1( , ) ( ) ( ) ( )u x y g y g y v x  ,                                          
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where 1( )g y  does not change sign. It is clear that the functional form corresponding to utility 

independence is a special case of that corresponding to preferential independence, where the 

function   is an affine function of ( ),v x i.e.  f v, y( ) = g
0
(y) + g

1
(y)v(x) . 

Once again, we observe the generality of the functional form corresponding to the ordinal 

property. Note for example, that the function  
2( )(1 ), v x yv y e    would satisfy the condition of 

preferential independence of X on Y but not utility independence.  

4. Two Attributes: Ordinal One-Switch Independence  

We have emphasized the equivalence of preference independence and the ordinal zero-switch 

property to suggest that the ordinal one-switch property that follows is a natural generalization of 

preference independence. 

Definition 4.1: X is ordinal one-switch independent of Y, written X 1S Y,  if for any pair of 

consequences in X either one is preferred to the other for all y, or they are indifferent for all y, or 

there exists a unique level of y (which may be infinite) above which one of the consequences is 

preferred, below which the other is preferred. 

This definition is unchanged even if X is multidimensional. It also extends readily to “n-switch 

independence” but we believe that zero-switch and one-switch are the most useful cases. Note 

that a function that satisfies ordinal zero-switch independence (preferential independence) of X 

from Y also satisfies the condition of ordinal one-switch independence of X from Y. 

In correspondence with the single-attribute case, our definition of ordinal one-switch 

independence excludes the case where a pair of consequences is equally preferred only on an 

interval: if two X values are ever indifferent at two different values of Y then they must be 

indifferent for all values of Y. 

The remainder of this paper will provide tests to establish whether or not a particular function 

( , )u x y  is one-switch and will provide families that, subject to given conditions, satisfy the one-

switch rule. The following examples illustrate the brute-force method of testing for ordinal one-

switch independence for some simple functions.  
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Example 4.1  Consider the ordinal utility function       
2

,  u x y x y x y    . 

For any two values of X, say 1 2,x x , the difference  

1 2 1 2 1 2 1 2( ) ( , ) ( , ) ( ) ( )( 2 )y u x y u x y x x x x x x y          . 

This function satisfies X 1S Y, because the difference switches sign only once, when 

 1 2 / 2y x x   .  

Example 4.2  Consider the function   2 2,u x y x y xy x    

The difference  

2

1 2 1 2 1 2 1 2 1 2( ) ( , ) ( , ) ( )( ) ( ) ( )y u x y u x y x x x x y x x y x x         
 

is quadratic in y, and therefore it need not satisfy X 1S Y. For example, for 1 1x   and 2 0x  , 

there are two switches as y varies.   

5. Sufficient Conditions for Ordinal One-Switch Independence  

In this section we consider how to test whether a given function ( , )u x y  satisfies the one-switch 

condition. Of course, we can always try the brute-force method for particular values of X for 

simple functions, but more complex functions require additional tools.  

Test  1:                       :  

       if 1 2( , ) ( , )u x y u x y  is strictly monotonic in y 1 2.x x   

If 1 2( ) ( , ) ( , )y u x y u x y    is strictly monotonic then it can cross the x-axis at most once, thus 

satisfying the one-switch condition. The   function in Example 4.1 is a linear function of y and 

therefore (strictly) monotonic. The   function in Example 4.2 is quadratic and thus not 

monotonic.  

Monotonicity of   is a sufficient but not a necessary condition for satisfying the ordinal one-

switch condition. To illustrate, the function ( , ) xyu x y e  satisfies the ordinal one-switch 

property. However, if we pick two values of X , say 1 2x   and 2 1x  , the difference 
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2( ) y yy e e    is not monotone because the derivative 
' ( )y  is positive when         and 

negative when        . 

 

Test 2: Constant Sign of the Cross-Derivative (for differentiable functions) : 

X      if the cross derivative  
2 ( , )u x y

x y



 
  does not change sign. 

If the cross derivative has a constant sign (either positive or negative), then for any 

1 2 1 2, ,x x y y   the difference   

2 2

1 1

2

1 1 1 2 2 1 2 2

( , )
[ ( , ) ( , )] [ ( , ) ( , )]

y x

y x

u x y
u x y u x y u x y u x y dxdy

x y


   

    

does not change sign. This implies that the difference 1 2( ) ( , ) ( , )y u x y u x y    is strictly 

monotone if the cross-derivative is either always positive or always negative. This condition is 

sufficient but not necessary. For example u(x, y) = x2ysatisfies X 1S Y but the cross derivative is 

   which changes sign. 

We note that the condition on the sign of the cross-derivative is a symmetric condition. 

Therefore, it implies not only that  X 1S Y, but also that Y 1S X .  

Example 5.1 Consider the function    
2

,
2

x y
u x y k x y


   . The cross derivative, 

2

2
u

k
x y




 
  

has constant sign. This implies that    satisfies X 1S Y (and that Y 1S X ). 

 

Example 5.2 Consider the function    , 2 sin .u x y xy x y   The cross-derivative 

 
2

2 sin 0
u

x y
x y


   

 
 implying that X 1S Y (and Y 1S X). 
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Test 3: Monotone Ratio: 

X 1S Y if the ratio  is strictly monotone in y for 1 2.x x   

If 1( , )u x y  and 2( , )u x y  are equal at both 1y  and 2y  then their ratio is 1 at those two values and 

thus the ratio cannot be strictly monotone in y. To illustrate, if ( , ) xyu x y e , then the ratio 

 is strictly monotone and therefore this function satisfies the ordinal one-switch 

condition. 

Test 4: Local and Boundary Double Switches 

If ( , )u x y  does not satisfy X 1S Y then it must have a pair, 1x  and 2x , that switches twice, i.e.  

x
1
x

2
 "y < y

1
;   x

2
x

1
 "y

1
< y < y

2
;  and x

1
x

2
 "y > y

2
 

But finding such pairs 1x  and 2x  might be difficult. To help identify such pairs, we introduce a 

test based on two new definitions: local and boundary double-switches.  

A local double switch is one where 1x  and 2x  lie in a local neighborhood of each other and 

switch twice.   

Definition 5.1 ( ,  )u x y  has a local double switch at 1x  if, for all small enough values of 0,d   we 

have 1 1~x x d  at two values of y, but not for all y. 

A local double switch may be found quite easily by identifying any x such that 
( , )u x y

x




 changes 

sign twice as y varies.  

Definition 5.2. X has a boundary double switch in X if 1 2  , x x  s.t.  1 2~x x  at both boundary 

values of Y on which u is to be defined but there exists at least one value of y within the boundary 

for which 1 2  , x x  are not indifferent.  

 

This kind of double switch is also relatively easy to test for. If 1y  and 2y are any two values of y, 

in particular those at the boundaries, then we can assess, plot, or calculate 1( ,  )u x y  and 2( ,  )u x y  

and then check directly whether these two curves cross twice. If they do, we then verify strict 

inequality of the curves 1( ,  )u x y  and 2( ,  )u x y for at least one value of y.  

1

2

( , )

( , )

u x y

u x y

1 2( )1

2

( , )

( , )

x x yu x y
e

u x y
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Clearly for u to be one-switch it is necessary that it have neither a local nor a boundary double 

switch. But when is the lack of local or boundary double switches sufficient to imply X 1S Y?  

Theorem 5.1 If ( , )u x y  has neither a local double switch nor a boundary double switch in X, 

and if for all fixed values of Y, ( , )u x y  is unimodal in x, then X 1S Y.  

The proof is lengthy, but the intuition is simple. If ( ,  )u x y  has a double switch with 1 2~x x  at 

both 1y  and 2y , then we look for a “nearby” double switch involving a pair of x’s that are closer 

than 1x  and 2x . In general this is not always possible (as in Example 5.3 below). However if the 

curves ( , )u x y  are unimodal in x, then a sequence of ever closer x’s can be constructed until 

either the x’s are arbitrarily close (a local double switch) or the y’s reach the boundary (a 

boundary double switch). The proof, along with others, is in an appendix. 

The following example shows that a general u can have a double switch but neither a local-

double switch nor a boundary double switch. 

Example 5.3    Consider the function 

3 21 (2 ( ) 1)
( , ) ( )( ( ) 1) ,

3 2

m y
u x y x x m y m y x


     

where ( )
y

y y

e
m y

e e



.   

To test for local double-switches we take the partial derivative  

( , )
( ( ))( ( ) 1)

u x y
x m y x m y

x


   


. 

The partial derivative is zero if and only if ( )x m y  or ( ) 1.x m y   Therefore, ( , )u x y  has no 

local double switches.  

To test for boundary double-switches, we have  

2

( , )
3 2

x x
u x x

 
   

 
  and  

2 3
( , ) 2

3 2

x x
u x x

 
    

 
. 
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Two values 1x  and 2x are indifferent at y     if and only if    2 2

1 1 2 2 1 22 3x x x x x x     and 

at y    if and only if    2 2

1 1 2 2 1 22 12 9x x x x x x     . Comparing these two expressions 

we see that any solution must satisfy 1 2 2x x   and  2 2

1 1 2 2 3x x x x   , which are not 

simultaneously possible for different x’s. Hence there are no boundary double switches.  

However u does have a double switch in this example, and thus X is not 1S Y. For example 

1 2.25,  1.75x x   are indifferent at .25m   and .75, corresponding to 1 .55y    and 2 .75y   

respectively. Note that ( , )u x y  is not unimodal in x as it is a cubic function.  

Based on our difficulty in constructing Example 5.3, we believe that as a matter of practice the 

absence of local and boundary double switches can be an important indication that X 1S Y even 

when the marginals are not unimodal.  

Milgrom and Shannon (1994) developed a single crossing test for three dimensional utility 

functions that will be useful to us later. Similar to the Debreu result, their result does not apply to 

the case n=2. 

 6. Families that Satisfy One-Switch Independence  

In our prior work, we applied the one switch independence idea to cardinal utility functions 

(Abbas and Bell 2011) and showed that the most general such function is

u(x, y) = g
0
(y) + g

1
(y)[ f

1
(x) + f

2
(x)w(y)],  where 1( )g y  does not change sign and w(y)  is a 

monotone function. This function necessarily also satisfies ordinal one switch (because a sure 

thing is a special case of a gamble). We have 

 1 2 1 1 1 1 2 2 1 2 2( ) ( , ) ( , ) ( ) ( ) ( ) ( )[ ( ) ( )] ,y u x y u x y g y f x f x w y f x f x         

which, since 1( ) 0,g y   changes sign at most once when w(y) =
f
1
(x

1
) - f

1
(x

2
)

f
2
(x

2
) - f

2
(x

1
)

. 

In Abbas and Bell (2011), we illustrated how to assess such functions and in Abbas and Bell 

(2012) we provided a variety of special cases that the analyst may wish to choose from since 

they also satisfy the ordinal condition. Note that this cardinal form does not necessarily satisfy 
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Tests 1, 2, 3 or 4.   For example, ( )y  need not be strictly monotone because 1( )g y  can be any 

non-negative function, such as 2+sin(y). 

As we have seen, ordinal functions satisfying preferences over consequences are more general 

than equivalent cardinal functions and so it is not surprising that there are even more general 

functions satisfying this ordinal one switch property. The following theorem provides a family of 

such functions.  

Theorem 6.1 The sum of functions          0

1

,  i i i

i

u x y v x k v x w y 




   

satisfies X 1S Y if each derivative term 
' ' i i ik    has constant sign for all   and if   is strictly 

monotonic. 

Note that    
2

' 'x y  Σ  i i i

u
v w k

x y
 





 


  has constant sign if      is monotonic but not otherwise, 

a further demonstration that the cross derivative condition is a sufficient but not necessary 

condition.  

Example 6.1 Consider the function    0, x y x yu x y v x xy e e e e       

This function satisfies the format of Theorem 6.1 because the term “    
    

 ” is respectively 

       and        which all have the same sign and          . 

Example 6.2 Consider the function          1 2

1 2,
w y w y

u x y v x e v x e


   . The difference 

  1 2w w
y ae be


    is zero if 1 2( )

/ .
w w

e b a


  This always has at most one solution if 1 2w w
e


 is 

monotone, that is, if    ' '

1 2 0w y w y  . Note that    and    do not have to be monotone 

individually. So                   has   
    

        but   
    and   

  

 .              
      

    
      , which changes sign uniquely when           

 but  
   

    
            changes sign when 3yx e  .  

7. Ordinal Utility Functions Satisfying One-Switch Independence  
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It will be convenient to adopt the notation 1 1 2 2( ) ( , ),  ( ) ( , )v x u x y v x u x y   where 1 2,y y  are the 

boundaries of an interval of interest.  

Theorem 7.1     If X 1S Y then there exists a function   such that  

 

 1 2( ) ( )( ,  ) , ,xu x y v v x y
 
for y1 ≤ y ≤ y2.                                       

 

where 21 1 2( ) ( , ), ( ) ( , )x uv x y x u xv y   ,  is strictly monotone in 1v and in 2v , and the function   

satisfies the boundary conditions  

   1 2 21 1 1 2 2,   , , , ,  v v y v v v y v   . 

 

Theorem 7.1 provides a necessary condition for ordinal one-switch functions. Compare this 

formulation to that of preferential independence in Theorem 3.1, where only one univariate 

function of x was required. Theorem 7.1 shows that ordinal one-switch independence is a 

generalization of preferential independence requiring two functions 1 2,( ) ( )xv v x . 

Example 7.1   Consider the cardinal one-switch form   

  

with         and              . 

As we have seen, this function satisfies X 1S Y because it satisfies the cardinal condition, but 

note that it can also be written as  1 2( ,  ) ( ), ( ),u x y v x v x y , where   is linear in both 

1 2( ), ( )v x v x . Therefore it satisfies the necessary condition for ordinal one-switch independence, 

as expected.  

Example 7.2 Consider the function 
2 2 2 2( , ) (1 )u x y x y xy x x y x y       . This function can 

be expressed in terms of the representation  1 2( ,  ) ( ), ( ),u x y v x v x y . If we define 

   1 ,0v x u x x  and     2

2 ,1v x u x x   then

  2

2

1 2 1( ,  ) ( ), ( ), ( )(1 ) ( ) .u x y v x v x y v x y v x y     
  

However, as we showed in Example 4.2, this function does not satisfy the one-switch rule.  

 

            0 1 1 2,u x y g y g y v x w y v x  
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Our focus will now be on twice continuously differentiable functions  . For expositional 

purposes it will be convenient to define 1 2( , , )DR v v y  as the ratio of partial derivatives 

 1 2 1, , /v v y v   to  1 2 2, , /v v y v  , i.e.  

 

 
1

2

1 2 1

1 2

2

, ,
( , ,

/

, , /
)

v v y v
DR v

v v
y

v
v

y





 

 
  

 

Theorem 7.2  Monotone Tradeoffs:   Given  1 2( ,  ) ( ), ( ),u x y v x v x y  where   is strictly 

monotone in 1 2,v v  and satisfies the boundary conditions of Theorem 7.1 then if  1 2( ), ( ),v x v x y  

has a local double switch then 1 2( ( ), ( ), )DR v x v x y  is not strictly monotone in y . 

Put the other way, this result shows that if 1 2( , , )DR v v y  is strictly monotone in y then the 

corresponding ( , )u x y   cannot have a local double switch. Note that the structure of   ensures 

that it also cannot have a boundary double switch. For if 1 2~x x   at both 1y   and 2y  , then   

automatically makes them indifferent for all y, which is not a double switch.  

 

Any function  1 2, ,v v y  can be used to generate utility functions ( , )u x y  by replacing 1v  by 

11( ) ( , )x u x yv   and 2v by 2 2( ) ( , )x u x yv  . Milgrom and Shannon (1994) proved an important 

result for three dimensional ordinal utility functions that we can apply directly to   to guarantee 

that the corresponding ( , )u x y  satisfies X 1S Y. 

 Theorem 7.3 The function  1 2, ,v v y  satisfies X 1S Y over any interval (y
1
, y

2
)  for any choice 

of functions v
1
= u(x, y

1
)  and v

2
= u(x, y

2
)  iff   is strictly monotone in 1v   and 2v   and 

1 2( , , )DR v v y   is strictly monotone in y. 

 

Example 7.4  Consider the case 1 2( , ) ( ) ( )u x y f x f x y   . This always satisfies X 1S Y. We may 

construct the corresponding   as follows, with, for example, 1 1y     and 2 1y  . We have 
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1 1 2( ) ( , 1) ( ) ( )v x u x f x f x    , 2 1 2( ) ( ,1) ( ) ( )v x u x f x f x   , so that 1 2
1

2

v v
f


   and 

1 2
1

2

v v
f


   yielding 1 2 1 2

2 2

v v v v
u y

 
   .  

Checking the conditions of Theorem 7.3 we note this is strictly monotonic in 1v  and 2v  over the 

range (-1,1) and 1 2

1
( , , )

1

y
DR v v y

y





 which is strictly monotonic over the same range. 

 

While we know from Theorem 7.1 that every u(x,y) satisfying X 1S Y can be expressed as  

 1 2( ), ( ),v x v x y and we see from Theorem 7.3 that every  1 2( ), ( ),v x v x y  obeying its 

conditions satisfies X 1S Y, we see from the following example that not every one-switch 

 1 2( ), ( ),v x v x y  satisfies the conditions of Theorem 7.3. 

 

Example 7.5 The function  satisfies X 1S Y but the corresponding 

 does not satisfy the conditions in Theorem 7.3. 

 

To see that u is one-switch note that if a>b are two values of X then they cross when 

b a
y

b a

e e
ye

e e

 



 , which has a unique positive solution in y because 

yye  is monotone for y >0. 

However 
yye  is not monotonic when y<0. The   corresponding to u satisfies the conditions of 

Theorem 7.3 when y>0, but not always when y<0. The problem arises due to the fact that 

although u does allow switching, it does so only when y>0, but the violations of ϕ occur when 

y<0 (ϕ does not violate the conditions if y is restricted to the positive range).  

 

Corollary 7.4  The function  1 2, ,v v y  satisfies X 1S Y over the interval (y
1
, y

2
)  for any choice 

of functions v
1
= u(x, y

1
)  and v

2
= u(x, y

2
)  if   is strictly monotonic in 1v   and 2v    and if  

2

1

0
v y




 
   and 

2

2

0
v y




 
. 

 

( , ) x y xu x y ye e  

 1 2( ), ( ),v x v x y
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The cross-derivative conditions imply that 1 2( , , )DR v v y  is strictly monotone decreasing so that 

Theorem 7.3 applies immediately. We highlight this result because the conditions on   in this 

result seem highly intuitive and transparent. Generating ordinal utility functions using the family 

 1 2, ,v v y  with appropriate restrictions seems to us to be a good way to generate a wide range 

of one-switch utility functions. 

 

8. Conclusions 
 

The concept of zero-switch preference, expressed ordinally as preference independence and 

cardinally as utility independence, has a long pedigree in the literature. The ordinal property in 

the univariate case corresponds to a monotone function of wealth, and to the notion of 

preferential independence for multiple attributes. Cardinally, this zero-switching property 

corresponds to the more specific linear and exponential utility functions and to utility 

independence for the case of multiple attributes.   

   

While the concept of zero-switching preferences leads to simple functional forms, it is hard to 

proceed if they do not apply. We propose that the natural extension of these concepts is that 

preferences can switch but at most once. In the ordinal case, we have shown that this property 

corresponds to the notion of a unimodal function, a natural extension of monotone functions in 

terms of switching preferences. The extension of the ordinal property of preferential 

independence to one-switch preferences has been the focus of this work.  

 

We defined the notion of ordinal one-switch utility independence and focused on two main 

problems. The first was whether a given utility function satisfies this ordinal property. We 

defined easily-discoverable local and boundary double switches and showed when testing for 

them was sufficient to prove X 1S Y. Though the absence of local and boundary switches is not, 

in general, a definitive indication that there are no double switches, we believe that it is a very 

strong indication. 

 

The second focus was on how to generate one-switch functions. We showed that ordinal one-

switch utility functions may be represented in the form  1 2( ,  ) ( ), ( ),u x y v x v x y  and, subject to 
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reasonable restrictions on ϕ, that any function of the form  1 2( ), ( ),v x v x y  will be a one-switch 

utility function. We believe that, despite exceptions (Example 7.5), most one-switch functions 

can be generated in this way. Consequently we propose the functional form 

 1 2( ,  ) ( ), ( ),u x y v x v x y  as the ordinal generalization of our recent work on one-switch 

independence (Abbas and Bell 2011, 2012).   
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Appendix 

 

Proof of Theorem 5.1 

 

For a given        that does not satisfy X 1S Y , let   be the set of all         that switch more 

than once, where       . We will say that a pair           is dominated if     
    

     

with   
     

       . We will say that a function “changes sign twice” if as y increases, it 

is strictly positive, then strictly negative, then strictly positive, or the same statement with 

positive and negative reversed. 

 

Lemma A1 If           and if                 changes sign at least twice, then         

is dominated. 

Proof If                      changes sign twice then, relying on the continuity of u, so 

does any function of the form                       if    and    are sufficiently small.  

By picking           we see that         is dominated.   QED. 

 

Suppose           has   zeros; i.e.            where        . We know from 

Lemma A1 that an undominated u cannot change sign twice. Therefore          for at least 

    of the   
    If all of the   ’s are finite then     of them involve       being  -shaped at 

   , that is, they touch the axis at    without changing sign. For ∆ to have no explicit  -shaped 

tangent to the axis the y’s would have to be infinite.  

 

Lemma A2  If           and      forms a  -shaped tangent at   , then         is 

dominated if all marginals are unimodal. 
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Proof It suffices to show that for some           the equation           
     

         
     has two distinct solutions for some  . As a first-order approximation we may 

write this as  

         
                       

               

or           
            

                           . 

We know, by assumption, that the RHS is  -shaped in  , touching the axis at    . In addition, 

if u is unimodal, then there exist infinitely many pairs   
      

    such that        
      

       
     . Consider the two possible pairings      

         
  and      

       
    . 

One of these makes the LHS positive, the other makes it negative. Since the RHS is  -shaped, 

one or the other of these choices has two solutions for  . Since   
  and   

  may be chosen to be 

arbitrarily small the approximation is inconsequential. QED. 

 

So, any undominated element of   must have a      that changes sign at most once, and makes a 

tangent at either    or   , perhaps both, but not between. 

 

Lemma A3 If           has a      that changes sign exactly once, and has no other zeros 

except at infinity, then it is dominated if all marginals are unimodal.  

 

Proof If        , consider        . Again, because the marginals for fixed y are 

unimodal, we know             s.t.                        . But for       

sufficiently small,                       must also cross zero. Hence           

     . Hence         is dominated.  QED. 

 

What remains is that if           is undominated, it must have a ∆ that is strictly non-zero 

except at    and    where it is zero. This is a boundary double switch. 

 

To outline the remainder of the proof, starting with any double switch having       we may 

construct a sequence of double switches by replacing each sequence member with another pair 

that dominates it. It is apparent from our derivation that each step in the sequence can be 

assumed to be arbitrarily small. Either this sequence converges to a local double switch, or it has 

a subsequence that converges to a local double switch, in which case we are done, or it 
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converges prior to becoming a local double switch. We will show that the sequence may always 

be restarted from such a situation. 

 

Lemma A4  If                 switch twice where       are small, and                 

for all  , then                 switch twice. 

 

Proof We know                       is double switch, but for small   this 

equals                   
         

  
    

         

  
  which means that    

         

  
    

         

  
  

switches twice, since                . But then                               

          
         

  
    

         

  
  also switches twice. QED. 

 

We note that if    
    

   is a sequence of double switches converging to    
    

   where    
  

  
   then if     

         
     then by selecting some large enough  , we know by Lemma A4 

that     
    

     
    

   is double switch and, moreover, that     
    

     
    

   dominates 

  
    

  since   
    

    
    

 . 

 

Proof of Theorem 5.1 

Since u is not one-switch, then S has at least one element say    
    

  . Construct a sequence 

(  
    

 )    by selecting for   
    

  any element of   that dominates   
      

   . If    
    

   

converges to a limit   
    

  (or a subsequence does) where   
    

    then there are two 

cases to consider. Either   
    

 is in S or it is not. If it is, simply restart the sequence with 

   
    

   in place of    
    

  . If it is not, then Lemma A4 must apply in which case the 

sequence may again be restarted. Since the sequence so constructed cannot end finitely,   
    

  

converges to  , and the sequence (  
    

 ) must contain a subsequence in which   
     and 

  
    . This point is a local double switch. QED. 

 

Proof of Theorem 6.1.  

    
1

Δ  i i i

i

y k w y 




   where    0 1 0 2 ,v x v x    and      1 2i i iv x v x   . 

The derivative with respect to Y gives     'Δ  Σ i i iy w y k    . 
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This derivative has constant sign for all   because each        
   has the same sign as   

    
    

 . Therefore,  Δ y  is monotone. Hence       . QED. 

 

Proof of Theorem 7.1 

We start with the following Lemma, where we define 1 1 2 2( ) ( , ),  ( ) ( , )v x u x y v x u x y  . 

Lemma 7.1 If X 1S Y and if there exist any two distinct values 1 2,x x   such that  

1 1 1 2( ) ( )v x v x  and 2 1 2 2( ) ( )v x v x  

then 1 2( , ) ( , )u x y u x y  for all y. 

Proof of Lemma. If there exist 1 2,x x  that satisfy 1 1 1 2( ) ( )v x v x  and 2 1 2 2( ) ( )v x v x , then this 

means indifference of 1 2,x x  at two points 1 2,y y , which (by our definition) is a violation of X 1S 

Y unless  1 2( , ) ( , )u x y u x y  for all y. 

Geometrically speaking, Lemma 7.1 implies that if we pick any two curves 1( , )u x y  and 2( , )u x y  

on the surface of a function ( , )u x y  that satisfies X 1S Y, then there cannot be any two distinct  

1 2,x x  whose utility values are equal on these curves unless they are equal on the entire domain 

1 2( , ) ( , )u x y u x y . A corollary of this result implies that there cannot be any regions of 1( )v x  

and 2 ( )v x  that are flat for the same values of x. QED. 

 

We now prove the Theorem.  

 

Proof of Theorem 7.1 Define   by the relation  1 2( ) ( ), , ( ,  ).v v y u xx x y   This assignment 

converts a two dimensional function ( ,  )u x y  into a three-dimensional function  1 2, ,( ) ( )v v x yx . 

To provide this mapping, every x must correspond to a unique pair  1 2,( ) ( )xv v x , i.e., this 

representation fails only if for some    and   , we have        1 1 1 2 2 1 2 2, v x v x v x v x   but 

                for some  . But this cannot happen if X 1S Y as we have discussed in 

Lemma 7.1. The condition on the boundary conditions follows from consistency of both sides of 
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the equation  1 2( ) ( ), , ( ,  ).v v y u xx x y   Lemmas 7.2 and 7.3 below show the necessity of strict 

monotonicity with 1v  and 2v  .  

 

Lemma 7.2 If X 1S Y, and if 2 1 1 1( , ) ( , )u x y u x y   and  2 2 1 2( , ) ( , )u x y u x y  then necessarily

2 1 1 2( , ) ( , ) u x y u x y y y y    .  

 

Proof of Lemma 7.2  Note that if 2 1 1 1( , ) ( , )u x y u x y   and  2 2 1 2( , ) ( , )u x y u x y  but there exists 

3 1 2( , )y y y  such that 2 3 1 3( , ) ( , ),u x y u x y then this would imply that preferences for 2x  and 1x  

have switched more than once, which is a violation of ordinal one-switch independence. The 

case of equality at 3y  is also excluded because it would imply that the difference changes sign 

from positive to zero and back to positive which is a violation of the one-switch condition. QED. 

 

Lemma 7.3 If X 1S Y, and if  1 2( )( , ) , ( ),u x y v vx x y , where  1 1( ) ( , )v x u x y  and 

2 2( ) ( , )v x u x y  then   must be strictly monotonic with respect to 1v  and v2 where defined
 
. 

Proof of Lemma 7.3  This Lemma translates the results of Lemma 7.2 into the formulation of 

 1 2, ,v v y : If 1 2 1 1( ) ( )v x v x  and 2 2 2 1( ) ( )v x v x ,  then 2x  is preferred to 1x  at both 1y  and 
2y  , 

and so it is preferred for all 1 2y y y  . Hence  2 21 1, ,v vd yd     1 2, ,v v y  1 2( , )y y y   if 

1 20, 0d d   and 1 2 0.d d   QED 

 

Proof of Theorem 7.2 If there is a local double switch then 1 1~x x d  at  1y  and 
2y  say. This 

means that for the corresponding  1 2( ), ( ),v x v x y  we have 1

1

2

2

( )
0

( )dv dv

v dx v d

x x

x

  
 

 
 at the 

two values of y. Thus 1 2( , , )DR v v y   equals 2 1'– / 'v v  at two values of y and is therefore not 

strictly monotonic. QED. 
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Proof of Theorem 7.3 In our notation, Milgrom and Shannon (1994) showed that attributes 1v   

and 2v   will cross at most once as y varies if 
2v




  is never zero, if 1 2( , , )DR v v y   is strictly 

monotonic in y, and if any two indifferent pairs of v values at a given y, say *v  and *w   at 1y y

, are always connected by a path of indifferent points also at 
1y . Though their result concerned 

three attributes we can apply their reasoning to  , which has three attributes, and thereby obtain 

a result for two attributes. As our conditions are slightly different we exhibit the proof. 

 

Since  is strictly monotonic in 1v   and 2v  it is clear from the geometry that, for any fixed y, its 

isopreference curves are connected. More specifically however, suppose *v  and *w are two 

values of (v1,v2) that are indifferent for some y3, where y1≤y3<y2. Note that because of strict 

monotonicity in v1 and v2 we must have (v1*-w1*)(v2*-w2*)<0 and this is true for any pair of 

points that is indifferent for a fixed y. 

 

Suppose that v1*>w1* and v2*<w2* and consider a new point (v1*-d1(v1*-w1*), v2*-d2(v2*-w2*)) 

where d1, d2 >0 are to be chosen. We can always find d1 and d2 so that this new point is 

indifferent to v* (and to w*) at y3. This is because  (v1*-d1(v1*-w1*), v2*) is strictly decreasing 

in d1 and  (v1*, v2*-d2(v2*-w2*)) is strictly increasing in d2. So we can always find d1, d2>0 to 

ensure  (v1*-d1(v1*-w1*), v2*-d2(v2*-w2*))= (v*,w*).  In this way we can construct a series of 

points v(k) such that v(1)=v*, v(n)=w* and v1(k)>v1(k+1), v2(k)<v2(k+1).  

 

Now suppose that DR(v*,y) is strictly monotone decreasing in y. Note that DR cannot be infinite 

or zero, except perhaps at the boundaries of Y. (If it were to be infinite at an interior point it 

could not then be decreasing before that point, if zero it could not be decreasing afterwards).  

Following Milgrom and Shannon we now observe that d1(v1*-w1*)
1v




  +d2(v2*-w2*)

2v




  =0 at 

y3 so that d1(v1*-w1*)DR(v*,y3) +d2(v2*-w2*)=0 at y3 and therefore by strict monotonicity of DR 

we have d1(v1*-w1*)DR(v*,y4) +d2(v2*-w2*)<0 at any larger value of y, say y4. 
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Therefore d1(v1*-w1*)
1v




+d2(v2*-w2*)

2v



  <0 at y4 or v(1)<v(2). 

But since 1 2( , , )DR v v y
 
is non-negative and cannot be zero except at the boundaries then for 

every v(k)~v(k+1) at y3 we have v(k)<v(k+1) at y4. Hence we cannot have v*~w* at y4. 

 

To show the other direction of the proof we will suppose a violation occurs at some point (v1*, 

v2*, y*) and then select functions 1( )v x  and 2 ( )v x  to exploit the violation. If   is not strictly 

monotone in 1v  at this point, select v1(x) and v2(x) so that 
* *

1 1( )v x v ,  
* *

2 2( )v x v , 

v
1

' (x*) > 0, andv
2

' (x*) = 0. Then for small d, we have x*+d preferred to x* at the lower boundary 

(where v1 is defined), x*+d<=x* at y* (because   is not monotonic in v1 at that point) and 

x*+d~x* at the upper boundary (where v2 is defined). If DR(v1*, v2*, y) is equal at y1 and y2 then 

as before, select functions 1( )v x  and 2 ( )v x  so that 
* *

1 1( )v x v , 
* *

2 2( )v x v , and 

' *
* *2
1 2 1' *

1

( )
( , , ).

( )

v x
DR v v y

v x
    QED 

 

 


